Potassium-selective block of barium permeation through single KcsA channels
نویسندگان
چکیده
Ba(2+), a doubly charged analogue of K(+), specifically blocks K(+) channels by virtue of electrostatic stabilization in the permeation pathway. Ba(2+) block is used here as a tool to determine the equilibrium binding affinity for various monovalent cations at specific sites in the selectivity filter of a noninactivating mutant of KcsA. At high concentrations of external K(+), the block-time distribution is double exponential, marking at least two Ba(2+) sites in the selectivity filter, in accord with a Ba(2+)-containing crystal structure of KcsA. By analyzing block as a function of extracellular K(+), we determined the equilibrium dissociation constant of K(+) and of other monovalent cations at an extracellular site, presumably S1, to arrive at a selectivity sequence for binding at this site: Rb(+) (3 µM) > Cs(+) (23 µM) > K(+) (29 µM) > NH(4)(+) (440 µM) >> Na(+) and Li(+) (>1 M). This represents an unusually high selectivity for K(+) over Na(+), with |ΔΔG(0)| of at least 7 kcal mol(-1). These results fit well with other kinetic measurements of selectivity as well as with the many crystal structures of KcsA in various ionic conditions.
منابع مشابه
The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K
Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel...
متن کاملComparative study of the energetics of ion permeation in Kv1.2 and KcsA potassium channels.
Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permea...
متن کاملFunctional Asymmetries and Sidedness of Proton Activation
Basic electrophysiological properties of the KcsA K 1 channel were examined in planar lipid bilayer membranes. The channel displays open-state rectification and weakly voltage-dependent gating. Tetraethylammonium blocking affinity depends on the side of the bilayer to which the blocker is added. Addition of Na 1 to the trans chamber causes block of open-channel current, while addition to the ci...
متن کاملSequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure.
Sequence-function analysis of K(+)-selective channels was carried out in the context of the 3.2 A crystal structure of a K(+) channel (KcsA) from Streptomyces lividans (Doyle et al., 1998). The first step was the construction of an alignment of a comprehensive set of K(+)-selective channel sequences forming the putative permeation path. This pathway consists of two transmembrane segments plus a...
متن کاملNa+ Block and Permeation in a K+ Channel of Known Structure
The effects of intracellular Na(+) were studied on K(+) and Rb(+) currents through single KcsA channels. At low voltage, Na(+) produces voltage-dependent block, which becomes relieved at high voltage by a "punchthrough" mechanism representing Na(+) escaping from its blocking site through the selectivity filter. The Na(+) blocking site is located in the wide, hydrated vestibule, and it displays ...
متن کامل